Corsi

Ateneo

METODI DI OTTIMIZZAZIONE PER LA GESTIONE

Docente Lorenzo Nicolodi

Descrizione

PROGRAMMAZIONE LINEARE
Problemi di Programmazione Lineare (P.L.) e loro formulazione: modelli di dieta, miscelazione, produzione, trasporto, scelta di investimenti; problemi in due variabili e loro soluzione grafica; terminologia della P.L. Geometria della P.L.: poliedri, insiemi convessi, soluzioni basiche ammissibili e vertici, Teorema Fondamentale della P.L. Applicazioni ai problemi della produzione: produzione in presenza di risorse limitate e processi produttivi, piani di trasporto, specificazioni dei prodotti, soddisfazione della domanda. Casi generali ed esempi numerici. Tecniche della P.L.: il metodo del simplesso e la sua implementazione; interpretazione geometrica ed economica del metodo del simplesso. Esempi applicativi. Dualita' nella P.L.: il problema duale; relazioni tra i problemi primale e duale: dualita' debole e forte; interpretazione economica del duale; dualita' e metodo del simplesso; analisi di sensibilita’. Esempi applicativi.

PROBLEMI DI OTTIMIZZAZIONE SU GRAFI E RETI
Grafi, alberi e reti: definizioni e notazioni. I problemi di flusso massimo e di flusso a costo minimo. Applicazioni al problema dell'assegnazione, del trasporto, del cammino minimo. Alcuni algoritmi di soluzione. Esempi applicativi.

Bibliografia:
- Note a cura del docente.

Testi di approfondimento:
- R. Dorfman, P. A. Samuelson, R. M. Solow, Linear programming and economic analysis, Dover Publications, Inc., New York, 1987, reprint of the 1958 edition.
- D. Gale, The theory of linear economic models, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960.
- F. S. Hillier, G. J. Lieberman, Introduzione alla ricerca operativa, McGraw-Hill, Milano, 2006.
- D. G. Luenberger, Linear and nonlinear programming, Second edition, Springer, New York, 2003.
- R. J. Vanderbei, Linear progamming: Foundations and Extensions,