UNIRSMPersone Stefano Orlandini

Stefano Orlandini

Orario di ricevimento

Su appuntamento tramite posta elettronica

Profilo biografico

Laureato con lode in Ingegneria Civile presso l’Università degli Studi di Parma (1991), ha conseguito il Dottorato di Ricerca in Ingegneria Idraulica presso il Politecnico di Milano (1995). È stato Ricercatore presso l’Università degli Studi di Ferrara (1999–2004) e Visiting Scientist presso INRS-ETE, Université du Québec, Canada (2007). I suoi interessi scientifici includono: analisi dei modelli digitali del terreno, interazione suolo-vegetazione-atmosfera, propagazione delle acque superficiali, ed interazione tra correnti idriche superficiali e sub-superficiali (http://www.idrologia.unimore.it/orlandini). Ha conseguito il Premio Giulio Supino (1992) e l’American Geophysical Union Travel Fellowship for Young Scientists (1999). È membro di associazioni scientifiche: American Geophysical Union, European Geosciences Union, International Association of Hydrological Sciences. É “journal peer reviewer” per riviste scientifiche quali: Geophysical Research Letters, Hydrological Processes, Journal of Hydrologic Engineering, Journal of Hydrology, e Water Resources Research. É “grant peer reviewer” per Istituzioni quali: Georgia National Science Foundation, Ministero dell’Istruzione, dell’Università e della Ricerca, National Science Foundation (USA), e Romanian National Research Council. É stato responsabile di progetti di ricerca finanziati da: UNESCO, Ministero dell’Istruzione, dell’Università e della Ricerca, e Ministero degli Affari Esteri. Autore di più di 15 pubblicazioni su riviste scientifiche internazionali su: Water Resources Research, Journal of Geophysical Research, Hydrological Processes, e Journal of Hydrologic Engineering. Il suo h-index (01/29/2012 15:35 GMT) è 8. Le metriche sulle citazioni (riviste indicizzate da ISI nel Web of Science) sono riportate all’indirizzo http://www.researcherid.com/rid/A-2587-2011.

Pubblicazioni

    • Morlini, I., S. Albertson, and S. Orlandini (2024), Characterization of annual urban air temperature changes with special reference to the city of Modena: a comparison between regression models and a proposal for a new index to evaluate relationships between environmental variables. Stoch. Environ. Res. Risk Assess., 128(4), 1163–1178. [PDF]
    • Moretti, G., and S. Orlandini (2023), Thalweg and ridge network extraction from unaltered topographic data as a basis for terrain partitioning. J. Geophys. Res. Earth Surface, 128(4), e2022JF006,943. [PDF]
    • Morlini, I., M. Franco-Villoria, and S. Orlandini (2023), Modelling local climate change using site-based data. Environ. Ecol. Stat., 30, 205–232. [PDF]
    • Balistrocchi, M., G. Moretti, R. Ranzi, and S. Orlandini (2021), Failure probability analysis of levees affected by mammal bioerosion. Water Resour. Res., 57, e2021WR030559. [PDF]
    • Balistrocchi, M., Moretti, G., Orlandini, S., and Ranzi, R. (2019). Copula-based modeling of earthen levee breach due to overtopping. Adv. Water Resour., 134, 103433. [PDF]
    • Moretti, G., & Orlandini, S. (2018). Hydrography-driven coarsening of grid digital elevation models. Water Resour. Res., 54, 36543672. [PDF]
    • Balistrocchi, M., Orlandini, S., Ranzi, R., & Bacchi, B. (2017). Copula-based modeling of flood control reservoirs, Water Resour. Res., 53, 98839900. [PDF]
    • De Bartolo, S., F. Dell’Accio, G. Frandina, G. Moretti, S. Orlandini, and M. Veltri (2016), Relation between grid, channel, and Peano networks in high-resolution digital elevation models, Water Resour. Res., 52(5), 3527–3546, doi: 10.1002/2015WR018076. [PDF]
    • Orlandini, S., G. Moretti, and J. D. Albertson (2015), Evidence of an emerging levee failure mechanism causing disastrous floods in Italy, Water Resour. Res., 51(10), 79958011, doi: 10.1002/2015WR017426. [PDF][SI]
    • Fiorentini, M., S. Orlandini, and C. Paniconi (2015), Control of coupling mass balance error in a process-based numerical model of surface–subsurface flow interaction, Water Resour. Res., 51(7), 56985716, doi: 10.1002/2014WR016816. [PDF]
    • Orlandini, S., G. Moretti, and A. Gavioli (2014), Analytical basis for determining slope lines in grid digital elevation models, Water Resour. Res., 50(1), 526539, doi: 10.1002/2013WR014606. [PDF]
    • Fiorentini, M., and S. Orlandini (2013), Robust numerical solution of the reservoir routing equation, Adv. Water Resour., 59(9), 123132, doi: 10.1016/j.advwatres.2013.05.013. [PDF]
    • Orlandini, S., G. Moretti, M. A. Corticelli, P. E. Santangelo, A. Capra, R. Rivola, and J. D. Albertson (2012), Evaluation of flow direction methods against field observations of overland flow dispersion, Water Resour. Res., 48(9), W10523, doi: 10.1029/2012WR012067. [PDF]
    • Orlandini, S., P. Tarolli, G. Moretti, and G. Dalla Fontana (2011), On the prediction of channel heads in a complex alpine terrain using gridded elevation data, Water Resour. Res., 47(2), W02538, doi: 10.1029/2010WR009648[PDF]
    • Camporese, M., C. Paniconi, M. Putti, and S. Orlandini (2010), Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res.46(2), W02512, doi: 10.1029/2008WR007536[PDF]
    • Orlandini, S., and G. Moretti (2009), Comment on “Global search algorithm for nondispersive flow path extraction” by Kyungrock Paik, J. Geophys. Res., 114(10), F04004, doi:10.1029/2008JF001193. [PDF]
    • Orlandini, S., and G. Moretti (2009), Determination of surface flow paths from gridded elevation data, Water Resour. Res., 45(3), W03417, doi: 10.1029/2008WR007099. [PDF]
    • Moretti, G., and S. Orlandini (2008), Automatic delineation of drainage basins from contour elevation data using skeleton construction techniques, Water Resour. Res., 44(5), W05403, doi: 10.1029/2007WR006309. [PDF]
    • Orlandini, S., C. Boaretti, V. Guidi, and G. Sfondrini (2006), Field determination of the spatial variation of resistance to flow along a steep Alpine stream, Hydrol. Process., 20(18), 3897–3913, doi: 10.1002/hyp.6163. [PDF]
    • Orlandini, S., G. Moretti, M. Franchini, B. Aldighieri, and B. Testa (2003), Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models, Water Resour. Res., 39(6), 1144, doi: 10.1029/2002WR001639. [PDF]
    • Orlandini, S. (2002), On the spatial variation of resistance to flow in upland channel networks, Water Resour. Res., 38(10), 1197, doi: 10.1029/2001WR001187. [PDF]
    • Orlandini, S., and I. Morlini (2000), Artificial neural network estimation of rainfall intensity from radar observations, J. Geophys. Res., 105(D20), 24,849–24,861. [PDF]
    • Orlandini, S., and A. Lamberti (2000), Effect of wind on precipitation intercepted by steep mountain slopes, J. Hydrol. Eng. Am. Soc. Civ. Eng., 5(4), 346–354. [PDF]
    • Orlandini, S. (1999), On the control volume modelling of near-surface soil drying, Phys. Chem. Earth, 24(7), 823–828. [PDF]
    • Orlandini, S. (1999), Two-layer model of near-surface soil drying for time-continuous hydrologic simulations, J. Hydrol. Eng. Am. Soc. Civ. Eng., 4(2), 91–99. [PDF]
    • Orlandini, S., A. Perotti, G. Sfondrini, and A. Bianchi (1999), On the storm flow response of upland Alpine catchments, Hydrol. Process., 13(4), 549–562. [PDF]
    • Orlandini, S., and R. Rosso (1998), Parameterization of stream channel geometry in the distributed modeling of catchment dynamics, Water Resour. Res., 34(8), 1971–1985. [PDF]
    • Orlandini, S., and R. Rosso (1997), Closure to discussion to “Diffusion wave modeling of distributed catchment dynamics,” by V. M. Ponce, J. Hydrol. Eng. Am. Soc. Civ. Eng., 2(4), 220. [PDF]
    • Orlandini, S., M. Mancini, C. Paniconi, and R. Rosso (1996), Local contributions to infiltration excess runoff for a conceptual catchment scale model, Water Resour. Res., 32(7), 2003–2012. [PDF]
    • Orlandini, S., and R. Rosso (1996), Diffusion wave modeling of distributed catchment dynamics, J. Hydrol. Eng. Am. Soc. Civ. Eng., 1(3), 103–113. [PDF]

Interessi di ricerca

L´ intera attività di ricerca svolta può essere suddivisa secondo le seguenti tematiche:

  • Analisi dei modelli digitali del terreno a elevata risoluzione.
  • Propagazione delle acque superficiali.
  • Interazione tra flussi idrici superficiali e sotterranei.
  • Misure di prevenzione delle alluvioni.
  • Serbatoi per il controllo delle piene.
  • Bioerosione di dighe in terra e argini.